Energy Proportionality and Performance in Data Parallel Computing Clusters

نویسندگان

  • Jinoh Kim
  • Jerry Chi-Yuan Chou
  • Doron Rotem
چکیده

Energy consumption in datacenters has recently become a major concern due to the rising operational costs and scalability issues. Recent solutions to this problem propose the principle of energy proportionality, i.e., the amount of energy consumed by the server nodes must be proportional to the amount of work performed. For data parallelism and fault tolerance purposes, most common file systems used in MapReduce-type clusters maintain a set of replicas for each data block. A covering set is a group of nodes that together contain at least one replica of the data blocks needed for performing computing tasks. In this work, we develop and analyze algorithms to maintain energy proportionality by discovering a covering set that minimizes energy consumption while placing the remaining nodes in lowpower standby mode. Our algorithms can also discover covering sets in heterogeneous computing environments. In order to allow more data parallelism, we generalize our algorithms so that it can discover k-covering sets, i.e., a set of nodes that contain at least k replicas of the data blocks. Our experimental results show that we can achieve substantial energy saving without significant performance loss in diverse cluster configurations and working environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green Energy-aware task scheduling using the DVFS technique in Cloud Computing

Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...

متن کامل

Parallel computing using MPI and OpenMP on self-configured platform, UMZHPC.

Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...

متن کامل

Achieving Energy Proportionality In Server Clusters

Green computing is a hot issue that has received a great amount of interests in the past few years. Energy proportionality is a principal to ensure that energy consumption is proportional to the system workload. Energy proportional design can effectively improve energy efficiency of computing systems. In this paper, an energy proportional model is proposed based on queuing theory and service di...

متن کامل

A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints

One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...

متن کامل

Hypnos: Unobtrusive Power Proportionality for HPC frameworks

The proliferation of large High-Performance Computing clusters executing computation-intensive jobs on large data sets has made cluster power proportionality very important [13]. Despite publicly available traces showing that many clusters have a low average utilization, existing power-proportionality techniques have seen low adoption, a major reason being that these techniques require modifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011